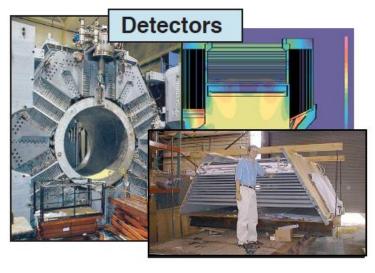
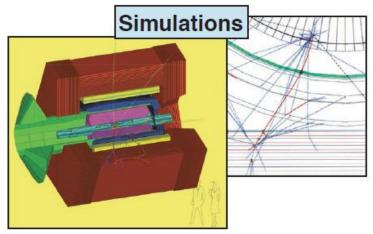
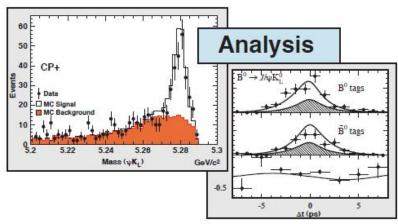

LLNL on the BABAR experiment


David J Lange
Douglas Wright
Lawrence Livermore National Laboratory

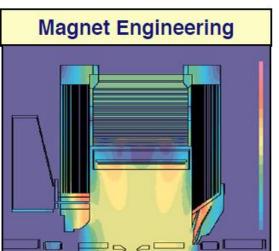

LLNL-PRES-471096


LLNL contributions touch every aspect of the B Factory Project

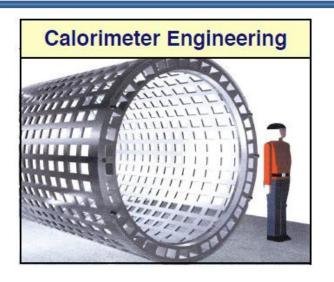
Accelerator: LLNL contributed to nearly every major accelerator system in PEP-II

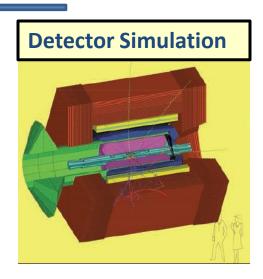
Designed RF cavities and established industry consortium for production

Q4 and Q5 septum **HER and LER** IR vacuum chambers quadrupole magnets RF cavity fabrication HER arc distributed LER wiggler, ion pumps non-evaporable getter pumps, vacuum chamber **HER and LER** straight section vacuum chambers HER = High Energy Ring LER injection LER = Low Energy Ring vacuum chambers



R&D to demonstrate high speed pumping required in HER





Detector component design and engineering

- Magnet field modeling for flux return
- Solenoid design and construction
- Calorimeter support structure w/ earthquake load
- Built complete GEANT detector model
- Optimized muon and K_L detector configuration
- Built B event generators: BEGET→EvtGen

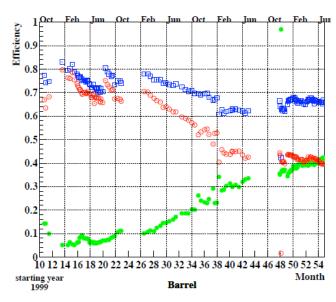
IFR Detector construction and commissioning

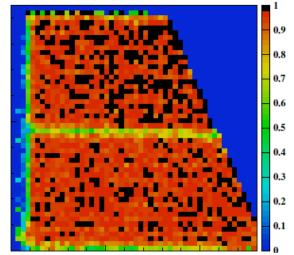
RPC assembly, cosmic ray testing and insertion

Cylindrical RPC construction

RPC gas system design and operation

IFR commissioning, RPC upgrade and μ/K_L reconstruction algorithms




Developed chamber efficiency calculation based on m-pair data

- Automated calibration performed every 12 hours as part of event reconstruction.
- Integrated into μ ID algorithms to optimally account for dead regions

Developed test stand at SLAC for FWD endcap replacement chamber testing

- BABAR DAQ system
- Comprehensive acceptance testing including structural integrity and performance.

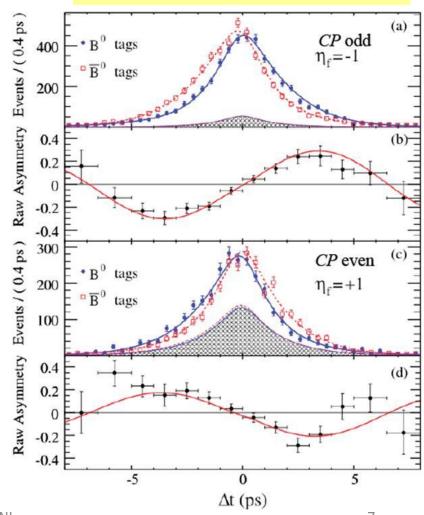
LLNL played critical role in $B \rightarrow (cc)K_S$ sin2 β analysis and CP violation discovery in B mesons

K_L reconstruction

- Developed calorimeter K_L ID
- Initial observation of J/ψK_L

Developed one of two CP fitting packages

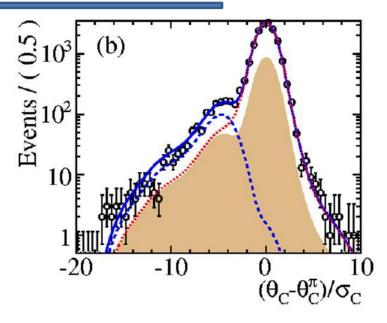
- Developed flexible background parameterization approach for larger data samples
- Developed direct CP fit procedure


Improved flavor tagging algorithm

 Developed neural network based flavor tag algorithm used in 2004 and later sin2β analysis.

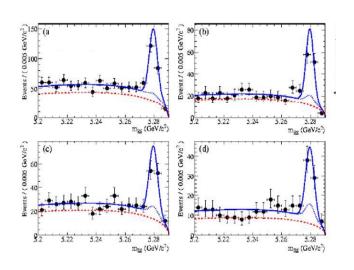
Analysis leadership

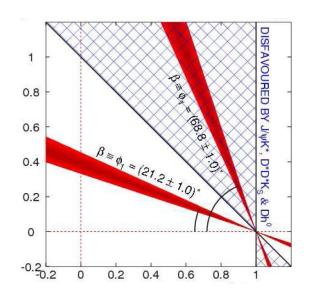
- K_L working group convener (1999-2000)
- Time-dependent analysis working group convener (2003-2004)


sin2β results on full data sample

Analyzed $B \rightarrow DK\pi$ for sensitivity to CKM angle γ : 3 body analysis technique was promising method

- Sensitivity to γ from interference between interfering amplitudes across Dalitz plot.
- Goal to measure $b \rightarrow u$ component, which is key to γ determination.
- Developed a dramatically improved DIRC θ_c parameterization for K- π particle ID
- Published results showing much higher than anticipated backgrounds and did not observe the b→u amplitude.

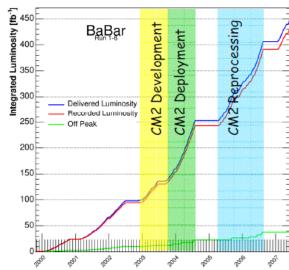



Branching Fract.	Result
$\overline{D}^{O}K^{+}\pi^{-}$ (no $D^{*-}K^{+}$)	(88 ±15 ±9)x10 ⁻⁶
$\overline{D}^{0}K^{*0} (K^{*0} \rightarrow K^{+}\pi^{-})$	(38 ±6 ±4)×10 ⁻⁶
$D_2^{*-}K^+ (D_2^{*-} \rightarrow \overline{D}{}^0\pi^-)$	(18.3 ±4.0 ±3.1)x10 ⁻⁶
Other D ⁰ K⁺π⁻	(26 ±8 ±4)×10 ⁻⁶
D ⁰ K ⁺ π ⁻	< 19×10 ⁻⁶
$D^{*-}K^{+} / D^{*-}\pi^{+}$	(7.76 ±0.34 ±0.29)%

Breaking the β ambiguity: Measure cos2β using color suppressed decays: $B \rightarrow D^0 \pi^0$, $D^0 - K_s \pi^+ \pi^-$

- Published analysis based on one of the first proposed methods to reduce 4 fold ambiguity in β from sin2 β measurement.
- Approach required time-dependent analysis of $K_s\pi\pi$ Dalitz plot.
- Data favored Standard Model solution.


$$\begin{array}{l} \text{cos} 2\beta = 0.54 \pm 0.54 \pm 0.08 \pm 0.18 \\ \text{sin} 2\beta = 0.45 \pm 0.35 \pm 0.05 \pm 0.07 \\ |\lambda| = 0.975 \pm 0.09 \pm 0.01 \pm 0.002 \end{array}$$

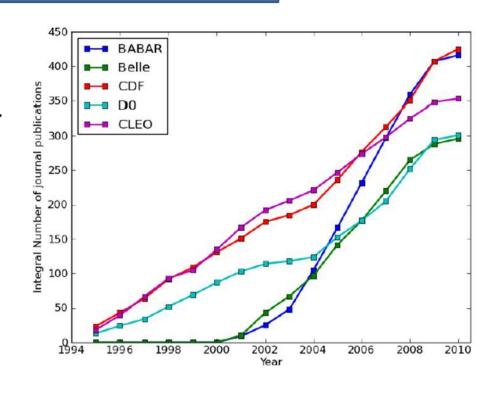

-cos2β>0 @87% CL

LLNL contributed to all facets of BABAR offline computing

- Co-authored EvtGen package designed for modeling details of complex sequential decays common to B decays
- Developed data sample skimming application and standardized physics analysis package for major revision of BABAR computing model ("CM2")
- Led reconstruction software and offline project through major data reprocessing and simulation production. Developed data quality procedures

Long history of collaboration leadership

Analysis:


- Publications Board chair
- Time-dependent analysis convener
- Flavor tagging group convener
- K_I working group leader

Detector:

- IFR operations manager
- IFR software manager
- Solenoid project engineer

Offline software/computing:

- Offline coordinator (reconstruction, simulation, skimming, etc)
- Reconstruction manager
- Physics software coordinator

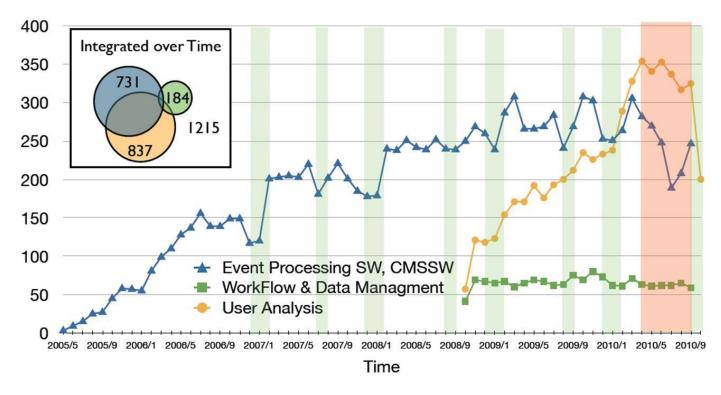
LLNL on **BABAR** Summary

Analysis phases of BABAR

- 4 postdocs
 - 3 have remained in high-energy physics
 [now at LLNL, CalTech, Rudjer Boskovic Inst. (Zagreb)]
 - 4 additional LLNL postdocs during construction phase [LLNL, BNL]
- Direct contributors or sole authors of 9 BABAR physics publications
- 12 conference presentations

Ongoing work:

- Involved in BABAR detector NIM paper update
- Support EvtGen use in BABAR analysis and super-B design.
 - EvtGen is defacto generator code for B-meson decays.
 - LHC-b experiment is pushing current development, however core algorithm expertise is limited to original authors


Backups..

CMS Offline software

David J Lange Lawrence Livermore National Laboratory

Offline software releases are basis of production applications and analysis in CMS

CMS rewrote its offline software starting in 2005 following a new development model. The coherent framework of "CMSSW" required that the release build/distribution tools be revamped at same time

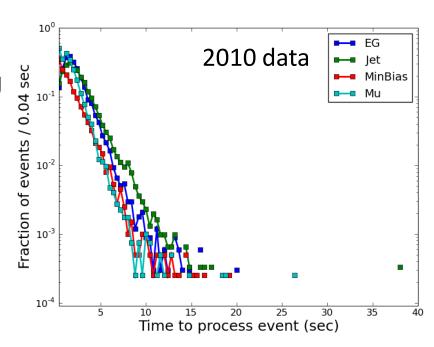
We led the software development tools group during this transition

Development philosophy:

- Build procedure should ensure consistency and flexibility.
- Ensure ability to recover from bugs that prevent CMS from taking data (even if in non-CMS codes).
- Ensure long term ease of maintenance
- Minimize changes to user interfaces

Our approach has paid off:

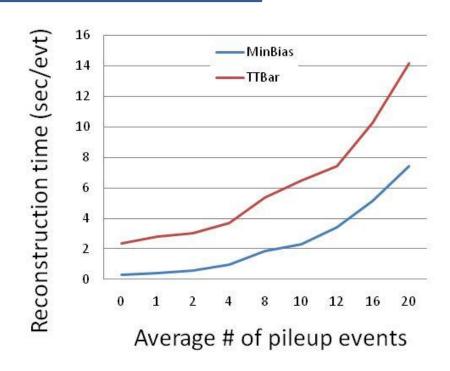
- A full release build is 4 hours on a single computer. We apply fixes at all levels (gcc, root, CMSSW) quickly and easily
- Most release coordination work turned over to non-experts. Most of their work focuses on ensuring the quality of CMS developer contributions
- We preserved the user primary interface to CMS software while making dramatic performance improvements behind the scenes


Event reconstruction algorithm performance a success on 2010 data

The reconstruction software is a major undertaking that spans the detector and physics groups in CMS. We are focusing on the overall integration and technical performance

Major milestones on first data:

- Developed effective mechanism to include latest developments into stable production system
- CPU requirement below TDR budget
- Very low job crash rate
- Many analyses use "prompt reconstruction" data for publication



High pileup expected for 2011 and 2012 brings new performance challenges

Performance optimization saves computing time and money

- We are part of small group working to improve technical performance of the reconstruction algorithms.
- Tradeoff between time required to reconstruct events vs. computing budget, physics reach and allowable trigger rate.
- Experts pursuing opportunities for improvement has proven to work better than leaving this work to individual developers

- Pileup has big influence on event reconstruction time.
 - Focusing on technical improvement to minimize increases in physics thresholds

Further ahead: Shared memory approaches needed to use future computing effectively

CPU processor development now driven to reduce wall plug power

Moore's Law increase in processor speed

Traditional HEP approach: One job = One CPU core

Evolution to many CPU cores per machine

New approaches needed to optimally benefit from CPU power

- With focus on performance, CMS is ahead of this issue. We are deploying first solutions this year. Current and near future computing can be effectively used via 'forking/copy-on-write' mechanism
- LLNL looking at next-generation solutions.
 - Increasing memory sharing in forking implementation
 - Evaluating mechanisms for algorithm level threading. Needed as computing moves from "multi-core" to "many core" platforms.